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We propose a general geometric method of derivation of invariant relations for 
hydrodynamic dissipationless media. New dynamic invariants are obtained. General 
relations between the following three types of invariants are established, valid in all 
models : Lagrangian invariants, frozen-in vector fields and frozen-in co-vector fields. 
It is shown that frozen-in integrals form a Lie algebra with respect to the 
commutator of the frozen fields. The relation between frozen-in integrals derived 
here can be considered as the Backlund transformation for hydrodynamic-type 
systems of equations. We derive an infinite family of integral invariants which have 
either dynamic or topological nature. In particular, we obtain a new type of 
topological invariant which arises in all hydrodynamic dissipationless models when 
the well-known Moffatt invariant vanishes. 

1. Introduction 
Conservation laws and topological properties play an important role in various 

models of continuous media. For instance the frozenness integral J = (V x V ) / p  has 
been known from the time of Lord Kelvin while the frozenness of magnetic fields in 
magnetohydrodynamic (MHD) theory was discovered by Alfvkn (1950). More 
complicated integrals which characterize linkage of vortex lines have been obtained 
by Moffatt (1969) (see also Moreau 1961; Frenkel 1982) and their topological 
meaning has been clarified by Arnol’d (1974). Similar helicity invariants have been 
obtained in MHD by Woltjer (1958) who also introduces the cross-helicity invariant 
(see e.g. Moffatt 1978; Berger & Field 1984). More complicated hydrodynamic 
models are exemplified by invariants for two-fluid plasma given by Sagdeev et al. 
(1986). 

Among other types of invariants for hydrodynamic models, the following are also 
well known: the Lagrangian invariants, e.g. the Ertel invariant (Ertel 1942), and 
more complicated Hollmann invariants (Hollmann 1964) ; for two-fluid plasmas, 
such invariants have been derived by Sagdeev et al. (1986). These invariants have 
been successfully applied to quantitative and qualitative analysis of various 
phenomena. In particular, for incompressible fluid, the frozenness integral J = V x V 
plays an important role in the derivation of equations of motion for systems of point 
vortices and vortex systems by Novikov (1985) and for the derivation of exact vortex 
solutions (Batchelor 1967 ; Tur & Yanovsky 1984, 1991). Some integrals involving 
arbitrary functions are useful for stability analysis of various solutions along the 
lines proposed by Arnol’d (1969) and developed by Holm, Marsden & Weinstein 
(1985). 
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There naturally arises the question of the nature of the invariants and their 
relation to the structure of a particular physical model. One can present still more 
examples of local integrals and topological invariants of higher order with respect to 
the fields and their derivatives (see, for example, $53, 5 and 6 below). A direct 
verification of these equations in coordinate representation however appears to be 
rather cumbersome and becomes practically impossible a t  still higher orders. 
Nevertheless there is a method not only to prove the existence of new local integrals 
and topological invariants, but also to express them explicitly in the coordinate 
representation. This method is the differential exterior forms calculus, which is 
presently widely used in physics (see, for example, Schultz 1982; Flanders 1989; von 
Westenholz 1981 ). 

Recognizing the difficulties for the reader of a paper with a new unfamiliar 
mathematical language, we include a number of definitions of some basic concepts of 
differential geometry and clarify them when necessary. This background is essential 
because there is no other way to construct high-order invariants apart from that 
discussed here. I n  addition, i t  is very difficult to perceive relations between these 
invariants in a framework that does not use the topological language, and so 
topological fluid mechanics, currently the subject of intensive study, must also be 
applied here. A similar opinion was formulated by Moffatt (1990). ‘My first assertion 
is that  topological, rather than analytical techniques and language provide the 
natural framework for many aspects of fluid mechanical research that are now 
attracting intensive study ’. 

We propose here a general geometric method of derivation of invariant relations 
in hydrodynamic dissipationless media. New dynamic and topological invariants are 
obtained. General relations between the following three types of invariants are 
established to be valid in all models : Lagrangian invariants, frozen-in vector fields 
and frozen-in co-vector fields. Introduction of exterior forms allows to define, in a 
natural way, integral invariants for hydrodynamic media; some of them are of a 
dynamic nature, the others are topological. In  particular, we obtain a new 
topological invariant which arises in all hydrodynamic dissipationless models when 
the well-known Moffatt invariant vanishes. 

I n  Appendices A and B we list the simplest invariants of the first four generations 
for both incompressible and compressible fluids, which can be easily extended with 
the use of relations given here. Though the low-order invariants look familiar, the 
higher-order ones are rather cumbersome. Such invariants arise in all hydrodynamic 
models and they have a simple geometric interpretation connected with exterior 
differential forms. 

Exterior forms of degree p < 3 exist in three-dimensional space, which leads to  
the existence of four types of local invariants (zero-forms or Lagrangian invariants, 
l-forms or S-invariants, 2-forms associated with frozenness integrals, and 3-forms 
connected with the density ones). We obtain relations between different types of 
local invariants. These relations allow a large number of new conservation laws to be 
obtained. Some of these integrals are similar to the higher helicity integrals. The 
helicity integrals and the higher ones are also very important for understanding of 
some fine properties of the turbulent motion (Moffatt 1981 ; Levich, Shtilman & Tur 
1991 ; Kiehn 1990, etc). Possible application of the new integrals will be presented 
elsewhere. 
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2. Local invariants 
Let us consider the principal types of local invariant fields that appear in 

hydrodynamics. Here and below we understand the invariance not as just 
conservation of a certain quantity, but, more precisely, conservation of this quantity 
in the comoving reference frame. In  other words, all temporal evolution of the 
considered field reduces to its advection. (Rigorous definitions will be presented after 
the introduction of some useful mathematical language of differential forms.) It is 
obvious that evolution of such an invariant field can be easily followed in Lagrangian 
coordinates (see (3.27)). This approach often provides useful information on the 
medium dynamics. However, it is much more important that the mere existence of 
local invariant fields leads to the existence of integral invariants and topological 
invariants which are conserved in the usual sense. Having thus found a sufficiently 
large set of local invariants, it is possible to construct new integral and topological 
invariants. We describe some types of local invariants below, making use of several 
well-known examples. We then demonstrate the impossibility of existence of other 
types of invariant fields in three-dimensional space. 

Let us consider the system of hydrodynamical equations for incompressible fluid 

a, V+(V*V) V=-VP,I  

div V = 0. I 
It is well-known that the quantity rot V is frozen into the fluid and satisfies the 
following equation : 

a, rot V +  ( V - V )  rot V = (rot V-V) V .  (2.2) 

For another widely known example, one can take the MHD equations 

(2.3) I - V P  1 
3, V + ( V . V )  V =  -+-rotBx B, 

P 4 v  

a, B+ (V-V) B = (B-V)  V, 

a,p+divpV= 0. 

- V P  1 
3, V + ( V . V )  V =  -+-rotBx B, 

P 4 v  

a, B+ (V-V) B = (B-V)  V, 

a,p+divpV= 0. 

(2.3) 

I n  this model the field B/p is frozen into the medium (as easily follows from the 
system (2.3)) and obeys the equation 

A slightly more complicated example is connected with two-fluid plasma hydro- 
dynamics (Sagdeev et al. 1986), which is described by the following system : 

I d V  
m i n i A =  dt -VP,+en, 
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and Maxwell's equations. Here y ,  n,, mi, pi and V,, n,, me, P, are the ion and electron 
velocity, density, mass and pressure, respectively. In this case the field that is frozen 
into the electron fluid is given by 

eH 
rot V,-- 

ne 
m e c ,  J"+(V, .VJ,)  = ( 4 . V )  v, 

at 
J , =  

and the field frozen into the ion fluid is 

_ _  eH 

' at ''-l 
-1 

ni 

A list of similar examples can be easily drawn up, but it is clearly seen that all the 
frozen in fields H/p ,  .(,J,, etc . . . are of the same form, while equations for the velocity 
field are significantly different. Thus, in various hydrodynamical models there exist 
vector fields frozen into the medium. We term the vector field J that obeys the 
equation 

a , J + ( V . V ) J =  ( J * V )  V (2.8) 

as frozen into the medium, or the frozenness integral. It is important to note that this 
definition is independent of the type of the relevant velocity field equation, and thus 
it is universal for all hydrodynamic equations, although of course, expressions for the 
field J in terms of original fields in a given hydrodynamical system may differ from 
each other. For example, J =  rot V in incompressible fluid, J =  rot V/p in 
compressible fluid, J= B / p  in MHD, etc. 

In geometrical terms, the definition (2.8) means that the field Jline is advected by 
the medium (by the Vfield). In fact, it can be easily proved that the fields embedded 
in a continuous medium are governed by (2.8). 

Let us consider such a field line parameterized by the variable 6 (e.g. the length 
measured along the line) in a continuous medium. Owing to the motions, x = x(s, t ) ,  
the field line moves. The vector field tangent to the line is defined as J(x, t )  = dx(t, 
s)/ds, while the velocities of the points at the line coincide everywhere with the 
medium velocity, dx(s, t)/dt = V(x, t ) .  Differentiating J(x,  t )  with respect to t ,  we 
easily obtain (2.8) for J. The integral curves for a given field J(x,t) are defined 
through (Moffatt 1978) 

J x d x  = 0. (2.9) 

It can be easily seen that the pattern of integral curves of the field J is preserved 
after multiplication of J by a continuous non-vanishing function. This implies that 
when advection of field lines is accepted as the basis of definition of frozen-in fields, 
all fields of the type j ( x ,  t )  J with f(x, t )  4= 0, are also frozen-in. Thus frozen-in fields 
can also obey equations of the form 

d Y  alnf - = Y.VV+ Y(-+ 
dt at 

(2.10) 

where Y = fJ. This explains the differences in the forms of equations for frozen-in 
fields which can be met in literature. We emphasize that it is more natural from the 
physical viewpoint to define a frozen-in field based on the behaviour of its field lines 
(or integral trajectories). Thus we are interested in equivalence classes (J) with 
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respect to integral trajectories, rather than in individual field types (all frozen-in 
fields which have identical integral trajectories belong to the same class). We 
consider the fields governed by (2.8), rather than (2.10), as representatives of each 
class. The reason for this choice, which is given below, is associated with the fact that 
representation (2.8) is more natural. 

Existence of the frozen-in fields rot V,  H / p  and J i n  the examples above mentioned 
leads to theorems, similar to the Stokes theorem, on conservation of curl, field line 
circulation, etc. The importance of these theorems is widely acknowledged. Another 
consequence is the existence of topological invariants (Moffatt 1969; Tur & 
Yanovsky 1991). Note that new non-trivial frozen-in fields correspond to new higher- 
ordered integral and topological invariants. 

Consider now another type of invariant met in hydrodynamics. The simplest of 
them are the so-called Lagrangian invariants, which are, by definition, the functions 
governed by the following equation : 

dz aI 
- = -+ ( v* V) I = 0, 
dt at 

(2.11) 

where V is the hydrodynamic velocity field. The physical meaning of Lagrangian 
invariants reduces to their advection by the flow. The definition (2.11), as well as 
(2.8), is naturally independent of the set of equations governing the velocity field. In 
this sense, this definition is universal for all hydrodynamio-type systems of equations. 

To exemplify Lagrangian invariants one can consider the entropy density S and 
the Ertel invariant I ,  = rot V - V S / p  (Ertel 1942) (where p is the medium density). 
These invariants are obtained in compressible adiabatic hydrodynamics and are of 
great importance in geophysical hydrodynamics and dynamical meteorology. More 
complicated Lagrangian invariants can be obtained from the model (Hollmann 
1964) : 

vs x or, I ,  = vs x VI ,  ( V - V H ) ,  I* = v S x Q * 3 ( V - V H ) ,  I ,  = VI,.  (2.12) 
P P P 

Here H = $:A  dt is the so-called action (with the Lagrange function A = aVZ-7, 
where 7 is the entalpy per unit mass). New examples of Lagrangian invariants of 
some other hydrodynamic models are presented below. 

The next type of local invariant, which is not so well known, is defined as a field 
S,  governed by the following equation : 

dS/dt = ( S  x V )  x V. (2.13) 

This equation probably needs some explanation since this representation is rarely 
met in the physical literature. Usually, this equation is represented in coordinate 
form, which makes it rather cumbersome. We give this form here for illustrative 
purposes (Batchelor 1967) : 

(2.14) 

The physical meaning of S-invariants reduces to advection of the surfaces defined 
by S(x, t )  dx = 0. In  other words, the surface orthogonal to the vector field S is frozen 
into the flow. To be more precise, the equation S(x,t)dx = 0 defines a plane 
orthogonal to S at each position x, so it defines a local field of planes frozen into the 
medium (see figure 1). If a global integral surface of the given field of planes exists 
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FIGURE 1. The field of planes defined by an S-type invariant. Some of the vectors S are marked by 
arrows. The left-hand side of the figure illustrates an integrable field of planes, the right-hand one 
shows a non-integrable field of planes. 

(that is, the surface tangent to the field of planes at each position), then it is also 
frozen into the medium. However, in contrast to frozen-in vector fields, for which 
integral trajectories always exist, the field of planes has integral surfaces only if a 
special condition known as the Frobenius condition (Flanders 1989) is satisfied. In 
terms of the S-field, this condition can be easily represented as Srot  S = 0. It is easily 
verified that if this condition holds at the moment t = 0, then (as follows from (2.14)), 
it holds for any moment t > 0. This implies a consistency between the Frobenius 
condition and the dynamics of hydrodynamic media. It can be said that the existence 
of integral surfaces is a topological property independent of hydrodynamic motions. 
This easily follows from the fact that the proof of time conservation S r o t S  = 0 is 
based only on the definition (2.14) of the S-invariant and does not involve a 
dynamical equation governing the velocity V of the medium. 

Examples of invariants of the S-type are scarce, one such is the momentum of a 
small ring vortex (Roberts 1972; Kuzmin 1983). For a compressible fluid, the 
simplest S-invariant is the velocity field in a certain gauge, or S = V-VH.  

The mass conservation law is usually satisfied trivially. However, for some formal 
reasons, clarified in $3,  it is convenient to consider the continuity equation, 

a,p+div(pV) = 0 (2.15) 

associated with this law as the last type of locally invariant field. 
We have thus defined four types of locally invariant quantities arising in 

hydrodynamic models of dissipationless media. These definitions are universal, in the 
sense that they are independent of the type of the hydrodynamic system considered. 
The following questions naturally arise in connection with the invariants discussed. 

First, do the types mentioned include all the dynamic invariants in hydrodynamic 
models and what is their geometrical nature! 

Second, since some local invariants are known in each hydrodynamic model (see 
the above examples), is it possible to build up some new invariants from the ones 
presented in the framework of these hydrodynamic models ? 

And, last, what do these invariants have in common with integral conservation 
laws, the topological ones in particular ? Is it possible to construct new topological 
invariants in hydrodynamic models ‘1 

The answers to these questions are positive and we discuss them in the following 
sections. 
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3. Geometrical nature of local invariants and differential forms 
Let us answer the simplest question: why there are only four types of local 

invariants Z 
A certain geometrical object is connected with each type of invariant presented 

above, namely differential form of degreep (p = 0 , 1 , 2 , 3 ) .  The language of differential 
forms is widely used in the modern physical and mathematical literature (Arnol'd 
1978; Flanders 1989: Schutz 1982; von Westenholz 1981), but for convenience we 
present some definitions and properties of differential forms here. 

By definition, an external form of degree p or the p-form wp is a linear and skew- 
symmetric function of p vectors, that is 

4a15;+a,5;,52, ..., = a l w ( r ; > 5 2 >  . . . j 5 p ) + a z w ( 5 ; > 5 , ,  ... ,5J, (3.1) 

(3.2) 

The set of all p-forms in R" (R" is the n-dimensional real linear space) makes up 
a linear space if one introduces addition and multiplication by a constant in the 
following manner : 

w(<l, ***,<&,5k+l) . - - , c p )  = ( - l )w(<,  '-*,~k+l,<k,"')5p). 

(3.3) I ( 0 1  +wz) (5 )  = W l ( 5 )  + @ 2 ( 5 ) ,  

5 = . . . , < p ) ;  CiER", 

(aw)  (5) = W 5 ) .  
In addition, an exterior product of forms w: A w i  is defined on this set as resulting 
in a (k+ Z)-form. The exterior product is distributive, associative and anti- 
commutative : 

(a1 w: + a, wk) A wz = a, w: A wz +a, w t  A wz,  

(3.4) I (wk A w ' )  A urn = wk A (w' A urn), 

wk A 0' = ( -  w' A 0'. 

There is one more important operation : the interior product of forms is defined in 
the space of exterior forms. If wk is an exterior form, and V is a vector field, then the 
interior product associated with the k-form wk-l is defined as 

(3.5) 

The interior product possesses a property that is usually called anti-differentiation : 

ivuf' A = ( iVWf'  A wi+( - l ) "wf '  A ( i y ~ i ) .  (3.6) 

Moreover i,+,w = ( i X + i Y ) W )  i f V W  =$,o. (3.7) 

ivw(1)(6) = w(1)( v). 

Application of the interior product with the V-field to this l-form O J ( ~ )  gives 

Let us give some useful examples of exterior forms. For the simplest example of 
a l-form we can take vectors coordinates in a given Cartesian frame xt = xi(<). For 
another one can take the work of a force F for the displacement 6: 

Here F is a given vector, c ~ l ? " .  

parallelogram formed by vectors rl and 5, : 

w; ( 5 )  = F.5. (3.8) 

For an example of a 2-form we can take the flux through the surface of a 

w;(<1)52) = V . ( < l X 5 2 ) .  (3.9) 



u3(c,,523g3) = (3.10) 
511 5 1 2  513 

531 532 5 3 3  

6 2 1  622 623  

The exterior product is a generalization of the vector product. For example, one 
can easily prove in R3 that (Arnol'd 1978) 

id> A W; = id;.,.. . 

Consider now exterior differential forms. For this purpose we introduce a manifold 
which can be considered without loss of generality, as a hypersurface in Rn, where n 
is sufficiently large. At each point of the manifold there exists a set of vectors tangent 
to the surface and forming a linear vector space denoted as TM. The union TM = 
UXEM TM, is called the tangent foliation of the manifold M .  Then, by definition, one 
calls the differential p-form d' 1, at a point x of a manifold M the external p-form on the 
tangent vectors belonging to TM,. If such a form is defined at  each point of the 
manifold M and it is differential, then a p-form is defined on the manifold M .  

For the simplest example of a differential 1-form one can take a differential of a 
function. Let us take for the manifold M a linear space with coordinates x,, ..., x,. 
The components Cl, .. .) c, of a tangent vector <E TR; are the values of the 
differentials of the coordinates dx,, . . ., dx, on the vector c. Any differential 1-form in 
R" with a given reference frame x,, ..., x, can be uniquely represented as 

o = a,@) ds, + .. . + u,(x) dxn, (3.11) 

where a,(x) are smooth functions. In addition the exterior product of the basic forms 
dxi forms a basis in the space of exterior differential forms. It can be proved that each 
differential k-form in R" with a chosen frame xl, . . ., x, is uniquely represented as (see 
e.g. Arnol'd 1978) 

"k = c at1, ..., it ("c)dx,, A 3 . * - 9  A dXik. (3.12) 

The 0-form is just a smooth function of Rn. Let us now describe the differentiation 
operation in the form space. The exterior differentiation d transforms k-forms into 
(k + 1)-forms and is characterized by the following properties : 

i,< ... <it 

I d(awlf/3w,) = adwl+/3dw2, 

d(dw) = 0. 

d ( d  A o") = ( d J )  A o"+ ( -  1)'d A dOk, 

In the case of Rn, the exterior differentiation operation is defined as 

(3.13) 

dxik. (3.14) 

Let us define another differential operator which is very important for our 
purposes. The Lie derivative L, along a vector field V is understood as the operator 
which transforms wk into wk as according to 

L,w = (i,d+di,)w. (3.15) 

Such a derivative is defined for all tensors fields, not only for differential forms. 
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The Lie derivative has several typical properties (Flanders 1989 ; Schutz 1982) 
which can be easily proved. It is commutative with the operation of external 
differentiation, 

dLv = Lvd. 

Moreover, L,i,-i,Ly = i[v ,y]’  L,L,-L, L,=L[v,,] ,  (3.16) 

where the square brackets denote a commutator of the vector fields: 

ar, av, 
[ V ,  y l =  Ve--Ye-  axe ax, 

Let us now introduce the definition of local dynamic invariants using the language 

We call invariant the differential form which satisfies the following equation : 
of differential forms, considering the time as a parameter. 

a,w+Lvw = 0, (3.17) 

where V is the velocity field vector. 
We restrict ourselves to the case common for hydrodynamic models, the three- 

dimensional space R3. Then it is easy to prove that only differential forms wp for 
p = 0, 1 ,  2, 3 are non-vanishing. The reason for vanishing of the form of any higher 
degree is associated with the form antisymmetry and with the linear dependence of 
any four vectors in R3, that is 

Therefore 
r 4  = a51+PL+y93. 

w4(< , ,<2 ,53 ,54 )  04((T1,52,53,0r51+Pr2+r53) 

= ~4((T1,r,,<3,5l)+~w4(rl,52,53,52)+yw4(rl,r2,53,r3). 
Then it is easy to prove that the forms containing two coinciding arguments vanish 

because of their skew symmetry (see (3.4)). That is why w4 = 0 in R3. Hence there 
exist only four types of dynamic invariants associated with invariant differential 
forms of degree p for p = 0, 1, 2, 3, respectively. 

Consider now how the definition (3.17) is connected with the usual definitions of 
local dynamic invariants in hydrodynamic models. Let us start with O-forms which 
are the usual functions, I = I(t,x, y ,  2). Application of the Lie derivative L, to a 
function reduces it to the derivative along the vector field V,  and the definition (3.17) 
for the O-forms becomes 

(3.18) 

Comparing this equation with the standard definition of Lagrangian invariants (2.8), 
one easily finds that 0-forms are Lagrangian invariants. 

Let us discuss now 1-forms, which can always be presented in the coordinate form 
in R3 as (see (3.11)) 

(3.19) 

The coordinate form of (3.17) for l-forms (3.19) reduces, after explicit evaluation 

aI - + ( V . V ) I = O .  
at 

3 

w1 = C Xi(t, X) dx,. 
i=l 

of the Lie derivative, to 

(3.20) 
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This implies that  an invariant 1-form determines an S-invariant (see (2.1 1) ) .  It 
should be noted that this fact is already important since, for example, i t  enables one 
to obtain an exact solution of (2.11) in Lagrangian coordinates. In  fact, let a t  t = 0, 
Si = Soi(xo, t ) ,  where x, are Lagrangian coordinates. Consider the trajectories of 
Lagrangian particles xi = x,(xo, t )  as a transformation of variables. Since an exterior 
form is invariant with respect to transformation of variables, we have the following 
identity : 

a d  
0 t -&? = = f l  d 0 ;  05 xj S i ( X  ’ lax; 3 

whence it follows that 

(3.21) 

is an  exact solution of (2.1 1) in Lagrangian variables. The validity of (3.21) can be 
verified by a direct substitution into (2.11). 

Consider now to the 3-form, which in R3 is 

w3 =f(t;x)dx, A dx, A dx,. (3.22) 

The coordinate representation of (3.17) for the 3-form (3.22) reduces to the following 
equation : 

(a,f+L(Vif))dxl axi A dx, A dx, = 0. (3.23) 

It is easy to  recognize the continuity equation in this. Thus, invariant 3-forms denote 
invariant densities. 

We emphasize the existence of an invariant 3-form, the mass form 

w3 = pdx, A dx, A dx, 

(where p is the density), which arises in all hydrodynamic models. From the physical 
viewpoint, this form is associated with the property of the continuity of 
hydrodynamic media that distinguishes hydrodynamic models as a separate class of 
physical systems. 

Consider now the invariant 2-form which can be represented in the given reference 
frame as 

(3.24) 

The coordinate form of (3.17) for the 2-form (3.24) leads to the equation 

O J ~  = A , & ,  A dx,+A,dx, A &,+A,dx, A dx,. 

a, A + ( VmV) A + A  div V = ( A  -V) V.  (3.25) 

Comparing this equation and the definition of the frozen-in integral (2.4) one can 
easily see that, after introduction of the field J 3 Alp, equation (3.25) coincides with 
the definition (2.4). This mean that an invariant 2-form defines a frozen-in integral. 
It is easy to introduce a definition for the frozen-in integral in the coordinate form 
using the special invariant 3-form of mass : 

w; = p dx, A dx, A dx,. 

The vector field J i s  frozen into the medium if w2 = iJw; is an invariant 2-form (that 

a, J + L , J =  0, (3.26) 

which coincides with (2.4). One can easily verify that (3.26) coincides with (2.4), 

is, i t  is governed by (3.17)). The field J satisfies the following equation: 
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because the Lie derivative of vector fields coincides with their commutator, L ,  J = 
[V,J1 ,  and has the following coordinate representation on the manifold (see, for 
example, Arnol’d 1978; Flanders 1989; von Westenholz 1981) : 

aBi i3At 
[A,  B] = A”---B”. 

a x k  axk 
(3.27) 

Thus, the evolution of the frozen-in vector fields reduces to their advection along the 
streamlines. This fact is the most important feature of the frozen-in fields, or their 
geometric meaning. This interpretation allows one to solve (2.9) easily in Lagrangian 
coordinates : 

axi 
JZ(x0, t )  = J!(x0) -. ax; 

This solution is a trivial transformation of a vector field J under transformation of 
coordinates due to the mapping xo -+ x. This solution has been well known since the 
time of Euler and has been obtained by direct integration of (2.1). 

Some consequences and advantages of the proposed interpretation of local 
dynamical invariants can be summarized as follows. 

(i) Local dynamical invariants are geometric objects, namely invariant differential 
forms. 

(ii) There exist only four types of local invariants corresponding to p-forms ( p  = 
0,1 ,2 ,3) .  This fact is a direct consequence of the three-dimensional nature of the 
space considered in hydrodynamic problems. 

(iii) All four kinds of equations (2.4), (2.8), (2.11), (2.12), which define local 
invariants, reduce to a unique universal equation (3.17) defining an invariant 
differential form. 

(iv) The exact solutions of equations governing local invariants in Lagrangian 
variables, having the forms 

4% t )  = ~o(xo), 

W O ,  t )  = Soj(x0) a40/axs> 
JZ(x,, t )  = J$(x,) axt/aX$, 

P ( X 0 ,  4 = Po@,) det (axOla4 

are obvious consequences of the invariance of the corresponding differential forms. 

4. Relations among different types of local invariants (new conservation 
laws) 

The above examples demonstrate that in each hydrodynamic model a few local 
invariants are known (see examples in 82). The following question is thus important: 
how to construct new dynamic invariants based on a certain number of the known 
ones ? 

In this section we obtain a universal relation which enables us to construct new 
invariants in any hydrodynamic model. The possibility of construction of such 
universal relations, valuable for all hydrodynamic models, is based on the definition 
of the local invariants in terms of differential forms. These definitions (for example 
(3.17)) do not depend on hydrodynamic equations for velocity fields. This is the only 
reason for universality of the relations among the invariants independent of 
equations for the velocity field. 
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Let us proceed to a derivation of universal relations for local hydrodynamic 
invariants. Consider an invariant differential form up, governed by the equation 

atWP+LVWP = 0. 

Since the exterior derivative is commutative with the Lie derivative (that is, dL, = 
L,d), we apply an exterior differential to this equation to obtain 

at(dwP) +LJdop) = 0. 

Hence, by definition, the form wPfl = dop is an invariant ( p  + 1)-form. This means 
that we have obtained three relations among the local invariants, namely 

wP+l = dwP ( p  = 0,1,2,3) .  (4.1) 
The coordinate representations reduce to the following : 

s’ = VI, 

pJ’ = rot S ,  

p’ = div ( p J ) .  

It follows that if in a hydrodynamic system of equations one knows a Lagrangian 
invariant I ( x ,  t ) ,  or S-invariant, or a field J(x ,  t ) ,  then using these relations one can 
construct a new field S(x, t ) ,  which is S-invariant, or a new frozen-in field J’, or a new 
density p’. Relations (4.2)-(4.4) also can be derived directly in the coordinate form, 
using one of the equations (2.8), (2.11), (2.14), or (2.15); however, the derivation in 
terms of differential forms presented above is the most simple and short. Let us 
present some simple examples of applications of these relations. 

In compressible adiabatic fluid the entropy density # ( x , t )  is a Lagrangian 
invariant (see e.g. Batchelor 1967). 

An S invariant follows from (4.2) as 

s = VS(x, 1 ) .  (4.5) 

S’ = V[rot V-VS/p]. (4.6) 

Using the Ertel invariant (see 92) one can obtain another S-invariant for the same 
system : 

In the same hydrodynamic model there exists an S-invariant S = V -  VH (see the 
example in 92), which can be used as the basic one. Then relation (4.3) leads to the 
well-known frozen-in integral 

J = rot S / p  E rot V/p. 

When the frozen-in field is used for construction of an invariant density according 
to (4.4), it  cannot lead directly to a non-trivial result since p‘ = 0. However, taking 
into account that a frozen-in integral preserves this property, being multiplied by a 
Lagrangian invariant (see (2.10)), it is convenient to use the following starting form : 

(4.7) 

(4.8) 

J = (S/p) rot V .  

p’ = div (Srot V ) .  

Then relation (4.4) yields the following new invariant density : 

These typical examples illustrate the possibility of deriving new conservation laws 
using the general theorem on invariant forms, dwp. The number of such 
examples can be easily extended in the framework of any particular model including 
the hydrodynamic one considered (see the Appendices). 
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Consider now some relations which will be useful below. We assume that a 
hydrodynamic model has two invariants forms, w: and w i .  Then the (k+l)-form 
wf A w; is also invariant. Indeed, we have by definition 

a , w i + ~ , w ;  = 0, atw:+L,w: = 0. 

Multiplying the first equation from the left by w: and the second one from the right by 
w i  and summing them we obtain 

Taking into account linearity of the operators a, and L ,  we have 

a,(@: A u ; ) + ~ , ( w :  A w:)  = 0. 

Hence, the form uk+’ = wf A u; is an invariant one from the definition of a (k+ 1) -  
form : 

(4.9) @ k f l  = k o1 A w;. 

A coordinate representation of this relation for k = 0 and 1 = 0,1,2,3,  implies that 
multiplication by a Lagrangian invariant does not violate its invariance, i.e. 

I’ = I1(x, t )  I , (x ,  t ) ,  S’ = I1 (x ,  t )  S(X, t ) ,  J’ = I1 (x ,  t )  J(x, t),p’ = I1(x ,  t )p(x ,  t ) .  

(4.10) 

p s  = S,(X, t )  x S,(X, t ) .  (4.11) 

Thus, given any two S-invariants it is possible to obtain a frozen-in integral. When 
k = 1 and 1 = 2, we have 

p’ = pJ(x,t) .S(x,t) .  (4.12) 

The new local dynamic invariants in (4.10)-(4.12), obtained from the starting set 
of local dynamic invariants, are indicated by the prime. 

Equations (4.10)-(4.12) can also be used for constructing invariants from any 
starting set. For example, the use of S-invariants (4.5) and (4.6) for compressible 
fluid (in the adiabatic case) leads to a new frozen-in integral given by 

At k = 1 = 1 one obtains 

(4.13) 
1 

P 
J” = - V S  x V (rot V -  VS/p ) ,  

where (4.11) has been used. 

and S, = V -  WH for the S-invariants : 
One more frozen-in integral follows from relation (4.11) when one chooses S ,  = VS 

(4.14) 

Starting from the frozen-in fields J =  rot V/p  and S, = VS,  (3.5), one can easily 
construct examples of invariant densities. Equation (4.12) implies that 

p’ = VSrot V. (4.15) 

When one takes J”, (4.13), as a frozen-in field and S, = V-VH for an S-invariant, 
(4.1 1) yields a new invariant density 

1 

P 
J”=-VSX(V-VH) .  

p ” = ( V - V H ) ( P S x V (  rot V-VS )) 
(4.16) 
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The equations (4.15) and (4.16) satisfy the continuity equation and have the allied 
integral invariants, to be discussed in the next section in more detail. Of course, the 
newly obtained invariants, when used instead of the starting ones, allow one to 
deduce many further invariants for a given model with the help of (4.2)-(4.4) and 

The above relations transform a starting invariant form into a higher-degree one. 
Let us discuss now the degree-reducing relations that transform an invariant p-form 
into an invariant (p - 1)-form. Such relations follow from the existence of the interior 
product operation. However, the interior product of an invariant exterior differential 
form and an arbitrary vector field violates its invariance. 

Let us prove that the interior product of an invariant differential p-form and a 
frozen-in vector field represents an invariant (p - 1)-form. 

To prove this we use two relations. The first one is a canonical commutation rule 
of the Lie derivative L, and the interior product operation i, (see $3) : 

(4.10)-(4.12). 

L x i y - i y  L,  = i , ,  yl‘ 

In this expression the commutator of vector fields is denoted by square brackets, see 
(3.27). The second one is the commutation rule of the partial derivative a/a t  = a, and 
the interior product i,: 

The proof of this relation is trivial. Applying, from the left, the interior product 
operation with the frozen-in field iJ to the equation for an invariant form, we have 

a t i y - i y a t  = iatp 

iJato+iJLp7@ = 0. 

Using the commutation rules and i, + i, = iA+B (that is, the linearity of the interior 
product), transform this equation to 

a,(iJup) +L,(iJWp)-ia,J+[,,JlwP = 0. 

The last term on the left-hand side vanishes since, by definition, a, J +  [ V,  JJ = 0 for 
a frozen-in field (see (3.26), (3.27)), hence 

at(iJW”)+L,(iJ@’) = 0. 

So, we have proved that the form 

u p - 1  = i J ( p  (4.17) 

is an invariant (p- 1)-form, if w p  is an invariant form and J i s  a frozen-in vector field. 
In coordinate representation, formula (4.17) gives the following two relations 

between different invariants (the third one is trivial and coincides with the definition 
of the frozen-in field w2 = iJw,”) : 

T = J - S ,  (4.18) 

x’ = ~ [ J x  J l ] .  (4.19) 

Let us give some examples of applications of these relations. In a compressible 
adiabatic fluid we take for the starting set the frozen-in integral J = rot V / p  and the 
S-invariants S, = VS and S, = V - V H .  Relation (4.18) gives the well-known Ertel 
invariant (Ertel 1942) and a new Lagrangian invariant, 

rot V .  ( V -  V H )  , I =  
rot V - V S  

Ie  = 
P P 
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It is easy to notice that if one takes for the frozen-in integrals J, (4.13), and S, = 
V-VH, one obtains from (4.17) the Hollman invariant (Hollman 1964) (2.12), 

vs x VI ,  
I ,  = * ( V-  VH). 

P 

The rest of invariants (2.12) and some new ones are also easily obtained with the 
subsequent use of the above-mentioned general relations. 

Taking as the frozen-in integrals J = rot V/p and J obtained from (4.13) or (4.14) 
and substituting them into (4.19) we have the following S-invariants: 

1 

P 
S" = -(rot V x  (VS x ( V - V H ) ) ) .  

(4.20) 

(4.21) 

Let us now approach the remaining class of relations which associate the new 
invariant forms of the same degree to the invariant starting forms. The existence of 
that kind of relation is due to the Lie derivative along a vector field. It is well known 
that the Lie derivative transforms a p-form into a p-form (Arnol'd 1978; Flanders 
1989 ; Schutz 1982). However, if one evaluates the Lie derivative of an invariant form 
along an arbitrary vector field, the acquired form may not be invariant. 

It is easy to prove that, in fact, the Lie derivative along a frozen-in vector field 
transforms an invariant form into an invariant one, that is 

~f = LJwP (4.22) 

is an invariant p-form if J is a frozen-in vector field and up is an invariant form. 
Strictly speaking, (4.22) is a simple consequence of the previously obtained 

formulae (4.1) and (4.17). Nevertheless, it leads to a number of useful relations. One 
can easily become convinced of this by noticing that the Lie derivative can be 
expressed in terms of the operators of exterior differentiation and interior product as 
L j =  diJ+ijd (see e.g. Arnol'd 1978; Flanders 1989; Schutz 1982). The cor- 
respondence with the previously proved relations becomes evident. 

In coordinate representation it follows from (4.22) that 

I' = J*VI ,  (4.23) 

(4.24) 

(4.25) 

(4.26) 

p' = div J l p .  (4.27) 

In these formulae the starting invariants are denoted by the corresponding letters 
I, S,  J ,  p, and invariants of  the new generation are distinguished by primes. 
Moreover, in these relations p, p' and p" are not necessarily the density of the 
medium since for p, p' and poo one can take any invariant density (for example, (4.8), 
(4.15) and (4.16)). 

Let us make some particular remarks on the expression (4.25), J3 = [J,, J J .  This 
important property endows the frozen-in vector field with the Lie algebra structure. 

1 

P 
.I" = (div J1 p)  J ,  
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In fact, we have proved that the commutator of two frozen-in vector fields is also a 
frozen-in vector field, and, as follows from the commutator definition (3.27), these 
fields anti-commute and satisfy the Jacoby identity : 

[JV Jz1 = - [J,, 4 1 9  
"Ji,Jz], J ~ I + " J ~ , J ~ I , J Z ~ + [ [ J Z , J ~ ~ , J ~ ~  = 0. 

Thus, the frozen-in vector integrals form a Lie algebra with the multiplication 
operation defined by the commutator of the vector fields. 

It is possible to  use (4.25) for construction of new frozen-in vector fields in 
accordance with the previously given set ( J1, J,).  

Note that an infinite-dimensional Lie algebra of vector fields possesses folia 
enumerable by the velocity field. The vector fields that belong to a given folio form 
a Lie subalgebra of frozen-in fields. This remark is to be of importance when deriving 
exact solutions in hydrodynamic media. 

Let us assume that we have two exact solutions of a hydrodynamic system of 
equations : 

J1 = .TI@, t ) ,  V ,  = V ( x ,  t ) ,  and J,  = J,(x, t ) ,  V ,  = V ( x ,  t ) .  
Here the indices enumerate different exact solutions, Then, with the help of (4.25), 
one can construct a new solution 

V3 = V(X, t ) ,  J3 = [ J ~ ( x ,  t ) , J 2 ( ~ ,  t)l. 

So, in this case (4.25) looks like the Backlund transformation (see e.g. Newel 1985) 
that transforms solutions of a hydrodynamic system of equations into its new 
solutions. 

Let us now give some examples of how to use the relations obtained between the 
invariants (4.23)-(4.27) to construct new invariants in compressible ideal fluid. 
Taking as the starting ones J1 = rot V / p  and J = ( l / p )  Vfl x V .  (rot V -  VSlp) and using 
(4.25) we have 

J=rot(-, *OtVxl p (  v s x v  r;"))). (4.28) 

This and the previous examples have been given for compressible fluid and 
naturally do not exhaust all possible cases. Let us now present invariants of ideal 
MHD, that has the following hydrodynamic system of equations: 

(4.29) 

1 
4n 

p(at  V + ( V . V V )  = -VP+-(rotBx B),' 

atp+div(pV) = 0, 
a,s+(v.v)s = 0, 

B 

P = P(p ,  S) .  1 
This system yields, by definition, the following three starting invariants : 

-T, = X(X, t ) ,  J, = B / p ,  Po = P ( X ,  t ) .  (4.30) 

Let us present a more detailed derivation of the starting S-invariant. An equation 
for the vector potential A follows from equation for the magnetic field. It has the 
form 
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Here I$ is an arbitrary function, chosen in accordance with the vector potential 
gauge. From the Coulomb gauge divA = 0, for example, it  follows that Aq5 = 
div ( V x B ) .  One can, however, choose another one corresponding to q5 = A .  V .  Then 
the equation for A transforms to 

in which one can easily recognize an equation for the S-invariant. Thus, the vector 
potential is the starting S-invariant in the chosen gauge : 

So = A. (4.31) 

It is obviously possible to obtain this invariant in the usual Coulomb gauge of vector 
potential div A = 0. Then 

S o = A - V $ .  (4.32) 

Here A is the vector potential in the Coulomb gauge and $ is the function defined 
by 

$+$- V - A  = 0, 

where d/dt is the total derivative and Aq5 = div ( V x A ) .  Equations (4.30) and (4.31) 
can be chosen as a basic set of invariants. Then the new first-generation invariants 
have the form: 

(4.33) 
B - A  I’ = -, 

P 
S = V S ( X ,  t ) ,  p‘ = B* A .  

The physical meaning of the invariant density is the helicity density of the 
magnetic field. I n  the second generation we have 

1 s’=- p” = BaVS, J1 = -[VS x A ] .  (4.34) B B - A  I” = -.vs, s” 7 v-  
P P B - A ’  P 

The geometrical nature of I“ is analogous to the Ertel invariant in compressible fluid. 
In the third generation, the invariants are much more abundant: 

(4.35) 1 
(4.36) 

1 B 
P B - A  

S: = - ( B  x (VS x A ) ) ,  J;” = - x (VS x A), p: = div 

B B * A  1; =-. 
B - A  ‘(7)’ 

(4.37) 

Here we have mentioned only some new invariants of ideal MHD. Multiplication of 
these invariants by an arbitrary function of Lagrangian invariants, for example, by 
f(S, I ,  I”, . . .) cannot violate its invariance. Further examples can be also easily 
constructed. 
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We have thus proved the following theorem: 
(i) The exterior product operation transforms invariant n-forms (that is, the forms 

(ii) The interior product operation i, (where J is a frozen-in field) transforms 

(iii) The Lie differentiation operation along frozen-in fields transforms invariant 

(iv) An exterior product of invariant forms is an  invariant form. 
Transformation of invariant forms into invariant forms can be illustrated using 

satisfying equation a, w + L,w = 0) into invariant (n + 1)-forms. 

invariant n-forms into invariant (n - 1)-forms. 

n-forms into invariants n-forms. 

the following diagram : 

Here the points indicate invariant forms of the corresponding degree, arrows indicate 
transformation direction of the operation whose notation is indicated a t  the line. 

5. Integral invariants 
The formulation of dynamic invariants in terms of invariant forms has another 

important property. It enables one to evaluate integrals of invariant differential 
forms over regions of various dimensions, that  is to  introduce natural integral 
invariants. As a matter of fact, the theory of differential forms has developed just 
from the theory of manifold integration (Arnol'd 1978; von Westenholz 1981; 
Flanders 1989; Schutz 1982). The classical definition of the integral, 

lD.f(z12 x2, dxl dz, dx3, 

indicates that the usual integral over regions in R3 is in fact an integral of a 
differential form. As is well known from calculus transformation of variables xi = 
xi@) yields the factor J = det {ax,/ay,), known as the Jacobian. 

It is easy to notice that the same factor arises due to transformation variables of 
a basic differential form ds, A dx, A ds,. So, the usual integral above mentioned is 
an integral of a 3-form, that is 

f(sl, x2, 2,) ds, ds, dx, = f(sl, z2, x3) dz, h dx, h dx, = w3.  s,. JD, 1% 
We could say that the differential-forms language legalizes the mathematical nature 
of explicit integration. The integral of differential forms with p < 3 over regions in 
R3, SD,d' with DP the p-dimensional surface or region, is defined in the same way 
(Arnol'd 1978; Flanders 1989; Schutz 1982). 

The existence of invariant forms which obey (3.17) allows the introduction of 
integral conservation laws of the form 

(5.1) 
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Here d' is an invariant p-form and P ( t )  is the p-dimensional region advected by 
fluid motions. 

Let us show that P ( t )  is an invariant. Consider the quantity P ( t )  in (5.1) a t  the 
moment t = 0:  

IP(0) = s wP(0). 
D p ( 0 )  

The region P ( 0 )  changes its position under the advection in accordance with the 
transformation xi = xi(xo, t ) .  Therefore, this transformation can be considered as a 
variable transformation law in the integral. The value of this integral is independent 
of the choice of variables, so that 

P ( 0 )  = P ( t ) .  (5 .2 )  

We have thus proved that the quantities P ( t )  are integral conservation laws, that is 

- 0. 
d I p  
dt 

- _  (5.3) 

To illustrate these arguments in the coordinate form, we prove the conservation of 
J D 3  w3 : 

p(x,t)dx, A dx, A dx,. i 1"t) = 
D S ( t )  

We perform the transformation of variables in the integral, which is connected with 
the transformation to Lagrangian coordinates, 

xi = X 6 ( X 0 ,  t ) .  

Then 13(t) = p(xo,t)det dxy A dx: A dx: s D'(0) 

We transform the integrand using (3.28) for an invariant density 

P(t) = p(x,,t)det {::} - det {"i} - dxy A dxO, A dxO,. s D S W  ax; 
Taking into account that det A det B = Det AB and ax;/i3xk is the inverse matrix to 
ax,/ax; (that is (axf/axk) (i3xk/ax:) = die) we have eventually that 

r 

13(t) = p o ( x o ) d x ~  A dx: A dx: = 13(0). 
03(o)  

Thus, we have proved that an integral conservation law is associated with any 
invariant form. Moreover, we can say that there exist three types of integral 
invariants in hydrodynamic models, depending on the degree of the associated 
differential form. The first type of invariant is 

P = J w;. 
D'(t) 

Here Dl(t) is a closed contour frozen into fluid. The physical meaning of this invariant 
is the conservation of circulation of the field S(x,t), which is an S-invariant. The 
second one is 

w;. 
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HereD2(t) is a surface comoving with the fluid. The quantity P describes conservation 
of the frozen-in field flux. The last type of the invariant takes the form 

13 = 1 @;. 

D3(t) 

The physical sense of this conservation law is obvious : the quantity associated with 
the invariant density inside a volume, which comoves with the fluid, is independent 
of time. 

Let us give examples of different types of integral conservation laws in 
compressible fluid theory and MHD, using the local dynamic conservation laws from 
the previous section. For convenience we present them in a form usual for 
hydrodynamics. In  compressible adiabatic fluid we have 

Here y(t)  is a closed contour moving with the fluid, S is t.he entropy, f is an arbitrary 
function on Lagrangian invariants : 

rot V .  (V-VH) rot V-VS V S  x VZ, ;s;  - (  V-VH); ... 
P P ’ P  

f =f( 

Only a few invariants of the first type I’ are given here (the number of these 
invariants is infinite and one can easily find new examples using equations from the 
previous section) : 

I 
( 5 - 5 )  

Here integration is carried out over a surface S( t )  moving together with the medium. 
Also: 

where O(t) is a three-dimensional volume moving together with the medium. 
The aforementioned examples include some known integral conservation laws for 

special choices off. So at f = 1 ,c becomes the mass conservation law, coincides 
withthehelicityintegral (Moffatt 1969)JV.rot Vdx,cwithf = Y(rot V . V S / p ) - g ’ ( S )  
coincides with the hypervorticity (Kuroda 1990). 
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Let us now give examples of integral invariants in ideal MHD: 

(5.7) 
B * A  

P 
@A - dl, 1; = iy(t) @VX - dl, 1; = fy(t, @V - dl, 

Here @ is an arbitrary function of Lagrangian variables: 

B - A  B B - A  B - V S  B B - V X  ;s;-.v-;-.-. V-; ...) @(- P B * A  P P ' P  P 

The gauge of the vector potential A used in (5.7)-(5.9) is chosen to he the most 
convenient, as described in the previous section. 

Equations (5.7) also contain known integral invariants when @ = 1 ,  for example 
I :  is the conservation of circulation of the vector potential, I ;  is the conservation of 
magnetic field flux, I: is the mass conservation law, and is the magnetic helicity 
conservation law (see e.g. Moffatt 1978). The number of examples can be easily 
increased with the use of equations from the previous section. 

We have proved the existence of an infinite number of integral invariants of three 
types in hydrodynamic dissipationless media. It is important to notice that these 
integral invariants are important for stability analysis of different solutions with the 
help of the method proposed by Arnol'd (1969) and developed by Holm et al. (1985). 
In  fact, these integrals can be included in the Liapunov functional with additional 
Lagrange multipliers when the Liapunov functional is to  be found. These int,egrals 
contain arbitrary functions, which make them useful in stability analysis for a wide 
class of solutions. It is necessary to  note that some of the integrals I3 have a dynamic 
nature (e.g. <, the mass conservation law), and have a topological nature (e.g. c, 
(5.6), the Moffatt integral and I;, (5.7), magnetic helicity conservations law). 

6.  Topological invariants 
Consider now topological invariants in hydrodynamic models. Some examples of 

invariants of this type have been obtained in MHD (Woltjer 1958), incompressible 
fluid (Moffatt 1969) and two-fluid plasma (Sagdeev et al. 1986) models. 

We start with a more simple question, that of the existence of charges of frozen- 
in fields. We have to use some well-known concepts. 

The invariant p-form u p  is called closed if d d  = 0. The forms satisfying the 
equation UP = are referred to  as exact. In  accordance with the PoincarQ 
Lemma (see e.g. Flanders 1989), in R3 the form exists that satisfies U P  = d d - l  for 
every closed form u p  (dwp = 0). Thus, invariant forms of degree p are naturally 
divided into two classes, unclosed and closed. For invariant forms m i  this means that 
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S-invariants are of two types. Exact forms are associated with S-invariants of the 
gradient type (e.g. S = V I ) ,  and the unclosed ones (e.g. S = V - V H ,  S = A )  are 
associated with invariants which can be regarded as vector potentials of frozen-in 
integrals (since w 2  = dwi is an invariant 2-form). Analogously, invariant two-forms 
are also divided into two types, namely the closed (exact) forms w2 = do1 possessing 
vector potentials (the latter being S-invariants, that is, pJ = rot S,  see (4.7)), and the 
unclosed invariant forms do2 + 0. It is easy to see that all known frozen-in fields 
correspond to exact forms. For example, in compressible fluid, we have p J =  
rot ( V -  V B ) ,  in ideal MHD pJ  = H,  while for ideal two-fluid plasma hydrodynamics 
pJ, = rot (V,- (elmc) A )  (see Sagdeev et al. 1986). In other words, all previously 
known frozen-in integrals are associated with exact forms w2 = do;. This leads to an 
important oonclusion : such frozen-in fields do not have corresponding charges. 

To verify this conclusion consider the flux of a frozen-in field through a closed 
surface i3D3 (we denote by aD the boundary of the region D )  which encloses the 
volume 03, 

(6.1) 
L 3  w2* 

The frozen-in field Jp is chargeless when the flux through any closed surface equals 
zero. In  terms of differential forms, Stokes’ theorem acquires an especially elegant 
form : 

1 2  = IDdw (6.2) 

and embraces all the theorems on region integration known in classical calculus, such 
as Stokes’, Gauss’ and Green’s theorems (Arnol’d 1978; Flanders 1989). According to 
(6.2), the integral (6.1) reduces to 

i,/ = J p 2  = 0 

since do2 = ddwi = 0 and w2 is closed. This proves that for a closed invariant 2-form 
the flux of a frozen-in field Jp vanishes, implying that these frozen-in fields are 
chargeless. In the coordinate form, the closed form of w2 implies that div Jp = 0 
which explicitly indicates the absence of charge. However, among the newly 
obtained frozen-in integrals, there are some associated with unclosed invariant 
2-forms. These frozen-in fields possess charges. For example, the form (see (4.9)) 

w 2  = djl A w i z ,  
is unclosed if w i l  is unclosed. In  fact, dw2 = dw& A w& - w i l  A dwiz 8 0. Therefore the 
frozen-in fields (4.14) (see also (4.35)) are related to a new type of frozen-in charged 
field. This property evidently has a topological nature and leads to non-trivial 
integral invariants of the type r 

which characterize 
these invariants in 

.P = J w2 * 0, 
aDa(t) 

the total charge within the region D3. Some explicit examples of 
compressible fluid are 

( V - V H ) x V [  rot V - V S  ]-dS1. 
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In  ideal MHI) we obtain 

1: = I,,, ( A  x VS) + dS’! 

In these expressions, integration is carried out along a closed surface s( t )  moving with 
the fluid. Of course, only some simplest invariants of the new type are presented 
here; as previously, their number can be increased (see 45). 

There arises a question : what are the topological invariants for frozen-in fields 
associated with closed 2-forms ‘3 The physical idea of introducing such invariants is 
rather simple. Since these frozen-in fields are chargeless, their field lines are either 
closed or extend to infinity. Therefore, when closed field lines are linked, then their 
frozenness prevents the flow from unlinking them, provided the flow is continuous. 
This is why the linkage of frozen-in field lines is also one of the topological invariants. 

Particular examples of such invariants have been obtained in MHD (Woltjer 
1958), for incompressible fluid (Moffatt 1969) and two-fluid plasmas (Sagdeev et al. 
1986). 

A detailed discussion of such invariants in incompressible media and their 
connection with topological principles can be found in Arnol’d (1974). 

Following (Arnol’d 1974), we can define topological invariants for arbitrary 
hydrodynamic media (see Tur & Yanovsky 1991). Consider again a closed 2-form, 

w, = i , 0 3 .  

According to the Poincark Lemma, a closed form on a smooth manifold is locally 
exact. Therefore, one can define a 1-form such that w$ = do:. Because the Lie 
derivative and exterior differentiation d commute, one can always transform, 
choosing an appropriate gauge, the form w i  into an invariant l-form frozen into the 
medium. Below we consider all w i  forms to  be equivalent to an invariant l-form w;. 

Now define the 3-form and integral invariant as 

Iq o3 A do;. (6.4) 
D3W 

Since m i  and do; are invariant forms, the 3-form 03 A d w i  is also invariant (see the 
theorem of $ 5 ) .  Hence, the quantity defined in (6.4) is an integral invariant, 

d.Z’/dt = 0. (6.5) 

When a natural metric exists in R3, in terms of frozen-in fields J ,  the invariant (6.4) 
takes the following coordinate form : 

We should stress that there are no additional restrictions on the regionD3(t), such as 
the orthogonality of J and the normal to the boundary of D’((t). Conditions of this 
kind appear only in definitions of the Moffatt invariant and magnetic helicity. The 
absence of such conditions is connected with the fact that rot-’(pJ) is an S-type 
invariant a t  a proper gauge choice. 

The importance of the absence of restrictions on the surface of D3(t)  becomes 
evident when the invariants are used for construction of the Liapunov functional 
(Holm et al. 1985). 

4 FLM 248 
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(4 (h)  

FIGURE 2. Illustration of the definition of the linking number for two contours y1 and yz, (a), as an 
algebraic summation over points a t  which the contour y1 intersets the surface associated with the 
contour y z ;  (b)  S is a surface area vector whose direction is determined by the contour yz 
orientation. 

Let us now discuss the physical meaning of invariants (6.6) in terms of frozen-in 
fields. We consider two dosed fields lines linked together (see figure 2a). The number 
of linkages L ( y l ,  y,) is defined in R3 as (Flanders 1989; von Westenholz 1981) 

Here the integration is carried out along the lines y1 and y,, taking account of their 
natural orientations, as determined by the direction of the frozen-in field J. 

This linkage number can be equivalently redefined as follows. Consider a closed 
field line y, and the surface with boundary y, ; the field line direction is defined in 
accordance with the outer normal to the surface, S,. Moving along the contour y1 in 
a positive direction, one adds + 1 when crossing the y,-surface along the S,  direction, 
and -1 when the crossing is in the opposite direction. The algebraic sum over all 
crossings of the surface by the contour y1 equals L(y,, y,) (see figure 2 b ) .  

Consider now (following Moffatt 1969) the lines y1 and y, as flux tubes of the 
frozen-in field Jp. Let the field Jp be zero outside these tubes. Integration over the 
tube volume y,, for example, in the invariant (6.6) should be organized as an 
integration along the tube and then in the orthogonal direction: 

J p  dx3 = Jp  ds dr, . 
Here ds is the cross-section of the flux tube y,, and the vector dr, is directed along 
the contour y,. Flux of the frozen-in field Jpds is constant along the tube, 

Jp dx3 = @, dr,. 

The integral (6.6), which now takes the form 

I' = @, rot-' (Jp) - dr, 
fyz 

can be transformed into a surface integral over the surface corresponding to the 
closed contour y,: 

I' = @,fy2 Jp-ds. 

From inspection of figure 2(b )  it is easy to see that this integral can be expressed as 

I' = @l, @,L(Y,, Yz ) .  

These heuristic argument imply that the invariant I' is proportional to the linkage 
number for a frozen-in field. More rigorously, one can prove that I' is proportional 
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FIQURE 3. Oriented contour configurations with zero linking number: (a) the Borromean rings, 
linked in triplets rather than couples, (a), two contours linked together but with zero linking 
number. 

to the average number of the field line linkages within the region D3. Proof of t,his 
statement for an incompressible fluid is given by Arnol'd (1974) where the topological 
meaning of the invariant I' is treated in a more strict manner, together with its 
connection to  the Hopf invariant (Bott & Tu 1982). I n  the more general case of an 
arbitrary hydrodynamic medium addressed here, these statements remain true. 

Moreover, vanishing of F does not mean topological triviality of the Jp field lines. 
I n  fact, a common example of non-trivially linked field lines with 1'= 0 is 
represented by the Borromean rings (see figure 3a) .  These rings are linked in triplets, 
rather than in couples. The reason for vanishing T is obvious. It is also clear that  only 
quadratic functions of the field Jp enter the invariant I', so that  this invariant is 
insensitive to triple linkages. However, the example of figure 3 shows that the 
integral IT can be equal to  zero for non-trivial linkage of two lines. So, even for P = 0 
the field line topology can be non-trivial. 

It is important to notice that the set of frozen-in fields constructed in the previous 
section generates a large number of different topological invariants of the I' type. 
These topological invariants describe a number of topological constraints, and so 
give a more detailed description of non-trivial field topology in hydrodynamic media. 

These topological invariants include the velocity field in combinations of order 
higher than 2, therefore these invariants are generally sensitive to triple, quadruple 
and higher linkages of field lines (e.g. Borromean ring and of higher-order 
configurations (Bott & Tu 1982; Berger 1990)). 

Let us present some examples of invariants of this type. One can easily obtain the 
following integral for compressible fluid : 

1; = rotV.(V-VVH)dz, A dx, A dx,. J D 3 ( t )  

This is a well-known Moffatt invariant (Moffatt 1969). Furthermore, 

1 I 
- [rot V x (VS x ( V -  V H ) ) ]  rot - [rot V 

P 

x (VS  x (V-VH))] dx, A dx, A dz,, I 
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describes an average number of line linkages of the frozen-in field 

Vx (VXx (V-VH)) , 1 
and I; is the same for the frozen-in field pt v. (V-VH)]]] 

P P 

In  ideal MHD analogous integrals take the form 
P 

4 = 1 - [ H x  1 ( A  xVX)]rot [" '$ '"'1 dx, A dx, A dx,, 
D3( t )  P 

H x ( A x V ( y ) ) ]  

P I ; = i  D3( t )  P A [ H x ( A x V ( y ) ) ] r o t  [ dx, A dx, A dx, 

The number of examples of topological invariants in these media, of course, can be 
easily increased. 

It should be noted that the nature of the invariants presented above is closely 
connected with the existence of one-dimensional foliation frozen into the media (the 
evolution of which reduces to their advection by fluid motions). The role of folia in 
these foliations is the same as that of the field (integral) lines of frozen-in fields. There 
exist certain topological prohibition rules associated with non-trivial configurations 
of these foliations conserving their type in the course of evolution (linkage of folia 
and knotedness of folia). This physical reason generates a large number of topological 
conservation laws associated with separate field lines, that is 'local ' topological 
invariants. From this point of view, the problem of classification of one-dimensional 
foliations (Tamura 1979) as a whole acquires great importance as a source of global 
topological invariants. 

Let us now discuss another, in our view more direct, interpretation of the invariant 

in terms of S-invariants. We can present it in the coordinate form with the use of 
S-invariants as 

P = 1 S-ro t  SdX. (6.10) 

We have used here an expression for an invariant l-form w1 = Si dxi. As noted in the 
$3, the S-type invariants form a density field frozen into the medium. In  terms of the 
1-form, a t  a given invariant form w i ,  the equation for this field is 

w; = s,&+ = 0. (6.11) 

This is the Pfaff equation (Flanders 1989; Schutz 1982) which determines planes 
orthogonal to the field S(x, t )  a t  each point. In  contrast to vector fields, the existence 
of integral surfaces to the field of planes governed by (6.11) requires the Frobenius 
condition (Flanders 1989; Schutz 1982) to be satisfied. In  terms of forms, we can 

w i  A dwi = 0. (6.12) present this condition as 

D S ( t )  
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FIGURE 4. The non-integrability of the field of planes; A1 characterizes the non-integrability 
measure of the field of planes at the point x,. 

The field of planes is integrable so that there exists an integral surface tangent to the 
field of planes) provided only the Frobenius conditions (6.12) is satisfied. We can 
rewrite this condition in terms of S-type invariants as 

S - ro tS=O.  (6.13) 

One can understand the impediment to integration of the field of planes in the 
following purely geometric sense. Consider a field of planes in R3. Choose a point x, 
and consider the plane associated with the field S(x,) (see figure 4). Choose a closed 
contour y passing through the point x,. The field S(x) is defined at each contour 
point, XE y. Draw a line through each point x E y of the contour y along the S(X) 
direction to obtain a cylindric surface (see figure 4). A section through this cylinder 
by the field of planes defines a field of directions on it. Consider now an integral line 
of this field of directions (which always exists), passing through the point x, on this 
cylindric surface, Having made a turn around the cylinder, the integral line yl in 
general does not reach the point x, again. This is just the impediment mentioned 
above to the existence of integral surfaces to the field of planes. Indeed, if an integral 
surface existed, the line y1 would be situated on it and would naturally reach the 
point x,, when passing along the path yl. Thus, the local criterion of integrability 
for the field of plains can be naturally introduced in terms of the limiting value of 
the ratio of A1 (the distance between the starting and ending points of the integral 
line yl) and the surface area cut out by the contour y when its radius tends to zero, 

(6.14) 
that is A1 

lim - . 
ACT 

Consider the case of a sufficiently small path y and define circulation of the field 
S along the closed contour y" consisting of the curve y' and the line connecting the 
starting and ending points of the path yl : s,,, S dl. Since the path yl is tangent to the 
field of plains by definition, it is orthogonal to the field S. Therefore, the sole 
contribution to this integral is due only to the line joining the outmost points of the 
contour yl. Then we have s,,, S .  dl = - IS1 Al. (6.15) 

Here A1 is the distance between the outmost points of the contour y1 (see figure 4) 
tangent to the field S(x,). 

I,+%, 

On the other hand, using Stokes' theorem implies 

l,,,S.dl = ls(y)rotS-dS'. 
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Taking into account the collinearity of dS’ and S,  we write dS’ as dS’ = dg/JSI S.  
The integral then becomes 

If the circuit y is sufficiently small, the integral can be evaluated as 

ACT Iy S.dZ = (Serot S )  -. 
IS1 

Comparing (4.22) and (4.23) we obtain 

A1 
S - r o t s  = -JSI2lim--. 

ACT 
Y+XU 

(6.16) 

(6.17) 

We see that this quantity characterizes the local criterion of non-integrability of the 
field of planes. 

The form w i  A do: provides in invariant measure of the degree of non-integrability 
of the field of planes defined by the l-form w;. In the coordinate form, we have 
ps = S-rot  S.  So the invariant P characterizes non-integrability of frozen-in field of 
planes associated with an S-type invariant. This interpretation is convenient for the 
introduction of new topological invariants. Consider a situation when I‘ = 0 due to 
vanishing of the density ps(S-rot S = 0) in the whole regionD3(t). It should be noted 
that the condition S- ro t  S = 0 is consistent with the medium dynamics, that is if in 
the region D3(0) (or R3) we have S-rot  S = 0 at t = 0, then S-rot  S = 0 in the region 
D3(t)  (or R3)  at any moment t. This is a consequence of invariance of the 3-form 
w i  A dwi or, in other words, the statement is true because the density ps = S-rot S is 
governed by the continuity equation. 

a 
- rot S + ( V .  V) rot S + rot S div V = (rot S - V ) V .  

Differentiating ps = S *  rot S with respect to t and substituting the result into the time 
derivatives @/at )  S and @/at )  rot S with the aid of (2.14) and the previous one, we 
obtain the continuity equation for ps in the form 

Making use of (2.14) one readily obtains the following equation for rot S :  

at 

a 
at 
--ps+div ( Vps) = 0. 

Thus, if the density ps equals zero at  t = 0, S .  rot SI+, = 0, it remains zero for all 
t > 0 : S -  rot S 3 0. So, if Serot S = 0 andP  = 0 in a regionD3(t) (or in allR3), then the 
field of planes defined by an S-type invariant is integrable, and the integral planes are 
frozen into the medium. This is why topological invariants appear, characterizing 
topological types of these two-dimensional surfaces, which, by virtue of the above 
arguments, cannot be modified by any fluid motions. It is easy to notice that these 
invariants are analogous to the local topological invariants characterizing the type 
of frozen-in field line (for example, a knot). Classification of two-dimensional surfaces 
is completely studied in topology, and such a topological invariant is well-known as 
the king of surface (Bott & Tu 1982). It can be also presented in an integral form 
using the Gauss-Bonne theorem (Flanders 1989; Schutz 1982). 

We are interested, however, in another, more approximate invariant, charac- 
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terizing a foliation into integral surfaces tangent to the frozen-in field of planes in 
region D3(t) (or in the whole R3) .  It follows from the Frobenius condition that there 
exists a l-form 01: such that 

dwi = w: A w i .  (6.18) 

Let us apply the operator a,+L, to the form dwi. Using invariance of both the 
wi-form and dwi-form (that is a, w i +  L,wi = 0 ) ,  we have 

(a,w;+LVw;) A Us = 0. (6.19) 

It follows from this equation that the 1-form u; satisfies equations of the type 

atu;+LVw; = mi. (6.20) 

Here a is an arbitrary function. 
Let us define a 3-form with the use of a;: 

w; = w; A dw:. (6.21) 

One can easily prove, taking into account (6.20) and (6.18), that the form w; is 
governed by the eauation 

Let us now define 

Assuming that D 

a,w;+L,w; = -d(adwi). 

an integral invariant 

P = J w: A dw:. 
D 

(6.22) 

(6.23) 

is a three-dimensional compact manifold one can easily prove 
conservation of the quantity I g .  In fact, applying a differentiation operator with 
respect to t and using (6.22) one obtains 

Using Stokes’ theorem (6.2), the right-hand aide can be transformed: 

Since for a compact manifold D its boundary aD equals zero, one obtains 

-- - 0. 
a I g  

at 

So we have proved conservation of topological invariants I g  appearing in 
hydrodynamic media, when the Frobenius condition S. rot S = 0 is satisfied, and 
hence, when the corresponding topological invariant IT vanishes. In this sense 
invariants I g  are complementary to the invariants P (6.4), and arise only when the 
latter tend to zero. In  differential topology (Tamura 1979) this topological invariant 
Ig (6.23) is referred to as a Godbillon-Vey number. It characterizes the type of two- 
dimensional foliations defined by the form w i .  One can also introduce integral 
invariants similar to (6.23), but with integration over local regions. 

Recognizing the importance of the new topological invariant let us present a proof 
of its conservation in hydrodynamic media in a coordinate form. This proof 
demonstrates one more advantage of the use of forms in comparison with coordinate 
calculations. The proof and derivation of different equations are extremely simplified 
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just in terms of forms. When there exist X-type fields (more exactly, invariant 1- 
forms), one can establish correspondence between the l-form w: and the co-vector 
field qi (w: = qi hi), if the metric exists. When Ssrot S = 0 this correspondence is as 
follows : 

(6.24) 
1 

S2 

The invariant 19, (6.23), is presentable in coordinates in the following form : 

p = - ( S x r o t S ) .  

n 

19 = J q-rotpdx, A dx, A dx,. 
mt) 

(6.25) 

Here D3((t) is a three-dimensional region advected by the flow, defined in such way 
that the normal vector n to the closed surface surrounding the region D3(t) (that is 
aD3(t) is everywhere orthogonal to rot S ,  that is nsrot SlaD3 = 0. This condition means, 
that dD3 coincides with one of the foliation foli formed by integral surfaces tangent 
to  the field of planes (OJ; = 0). 

Let us derive an equation describing evolution of the field p (in terms of forms it 
corresponds to (6.20)) with the use of an equation defining an S-type invariant (2.14). 
Introduce a convenient notations q = ( 1/S2) ( S  x rot S )  and 

T i  = Psk T k i .  (6.26) 

Here p = 1/S2, Tki = aX,/axi-aS,/i3x,. Now using (2.14) it  is easy to  obtain an 
equation that describes the /3 and Tki evolution. Differentiating yi ,  (6.26), with respect 
to  time and substituting derivatives aplat, as la t  and aT,,/at using their evolution 
equations, it is easy to derive an equation for p in the form 

Thus, it remains to prove that the terms on the right-hand side are transformed to 
the form as. Using the identity 

(here cap. is the unit antisymmetric tensor) transform the terms on the right-hand 
side of (6.27) to obtain 

av, av, 
- T X  -+- 

lei - [ a x ,  axml 

The terms have now acquired the necessary form. The latter terms should be 
presented as 2p(q x S )  ,S,(i3Ve/axm) einap. 

Taking into account the constraint rot S = p x S (which follows from (6.18)) 
transform this equation to the form 



Invariants in dissipationless hydrodynamic media 97 

Using once again the identity 

%ke‘pne = ’ip’kn-’$n’kp 

to  transform the second term on the right-hand side, we obtain 

Noticing that the last term on the right-hand side is equivalent to 

p(S x rot V) x rot S ,  

we obtain (with the use of S - r o t  S = 0) 

(6.28) 

This equation coincides with (6.20). 
To obtain equation for p = rot q,  apply the curl operation to (6.28) : 

Now use the identity 

to  transform equation for p into a more convenient form : 

atp+( V.V)p+pdiv V-@.V) V =  rot(olS). (6.29) 

Multiplying (6.29) by 7 and 16.28) by p and summing the resulh, we obtain an 
equation describing the function $ = qrotq which appears under the integration 
sign in invariant (6.25) : 

a,y%+div(y%V) = qrot(aS). 

It is easy to prove that S .  rot q = 0 (by means of evaluating the divergence of this 
equation and taking into account that rot S = q x S ) .  So the equation is presentable 
in a more convenient form as 

at$+div(V$) = div(aSxg) .  (6.30) 

One can appreciate advantages of the language of forms when comparing the 
derivation of (6.30) in the coordinate form to the derivation of the same equation, 
(6.22), in terms of forms. 

Differentiating P (6.25) with respect to time we have 

(a, $ + div (V$)) ds, A dx, A dx,. 

Taking into account (6.30) one can present the integrand as 

div (as x q)  dx, A dx, h dx3. 
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Now with the help of Stokes' theorem transform the volume integral into a surface 
one : 

where n is the unit vector normal to the surface i3B3(t), dS' is the element of surface 
area aD3(t). Since vector n is parallel to vector S,  the integral vanishes, implying 

This accomplishes the proof of the fact that the invariant P, (6.25), is conserved 
for all hydrodynamic media. In geometrical terms, this invariant characterizes the 
degree of non-integrability of the field of planes wi orthogonal at each point to an 
integrable field of planes defined by means of w i ,  or the S-type invariant. 

We have thus rigorously proved conservation of the invariant Ig. It only remains 
to realize that it does not vanish identically. For this purpose, it is sufficient to 
construct an example of the field with Ig =+ 0. Let us give such an example using a 
field S of the type S = $V$. This field satisfies the Frobenius equation Ssrot S = 
$V@-.[V$ x V$] = 0, so there exists an integral surface for the field of planes 
orthogonal at  each point to the vector field S.  In our example these are the surfaces 
where the function @ is constant. 

Let us choose for these functions the following ones : q5 = x + z4 and q? = y + 112. 
Evaluating the corresponding field q = ( l/S2) [ S  x rot Sl according to its definition, 
it is easy to find the integrand of the invariant as 

4z4(5 + z4) 
p r o t  = - 

( x + z ~ ) ~ ( ~  +z4),' 

Since the quantity q rot q is strictly negative throughout the region X E R ~ ,  it  is clear 
that its integral cannot be zero. So we can say that there exist configurations of field 
S such that S .  rot S = 0 (and correspondingly, I' = 0 )  and the value of the topological 
invariant I g  on them does not vanish. 

With this we complete a rigorous proof that either invariant I g  is conserved or it 
is non-trivial. 

Let us give the simplest examples of new topological invariants. If the equation 
( V -  VH) rot V = 0 holds for compressible adiabatic fluid in a regionD3(t) (or R3),  and 
hence the Moffatt invariant vanishes, 

P = lD3 (V-VVH).rot Vdx = 0 

a new topological invariant appears : 

I' = .,/& (V-VH) ( v-vH)2 x rot V .rot((V-vH)xrot ( v- VH)2 y d x l  A dx, A dx3, (6.31) 

where vector n normal to the surface aDs(t) is everywhere orthogonal to rot V,  

n-rot V ( a D ~ ( t )  = 0. 

In this model there exist S-type invariants for which the Frobenius condition is 
satisfied automatically. For example S, = A78 and S, = mf, where 

I"=  rot ~ / p .  
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For such S-type invariants the topological invariants vanish, IT = 0. That is why 
only topological invariants Is are non-trivial for them. For the above-mentioned 
fields the Ig  invariants are as follows: 

vr". v s x v  ~ 

dx, A dx, A dx,, 

( 52 ( cvf'2 "dx1 A dx, A dx,. 

( 
D3( t )  r'L 

or". vs vs- VTXV - 

s 
s 

I; = 

I! = 
D 3 ( t )  

(6.32) 

(6.33) 

I n  the invariants PI,,, vector n normal to  dD3(t) is orthogonal to ( V f x  VX), that is 

n- ( V ~ X  VX) l a D S ( t )  = 0. 

A new topological invariant also appears in ideal MHD with A - H = 0 and P = 
S A - H d x  G 0 (here, as above A is presented in the most suitable gauge): 

(6.34) 

where vector n normal to the surface 8D3(t) is also orthogonal to H .  
In  MHD there also exist p-type invariants for which Ssrot S = 0. For these fields 

the invariants I' are trivial, I' F 0, and so there exist only topological invariants 19. 

As examples of such fields in MHD, one can consider 

For these fields the topological invariants P are 

(6.35) 

(6.36) 

where P = A . H / p  and the normal vector n to 8D3(t) is orthogonal to the 
corresponding rot S. 

Of course, we have presented only the simplest examples of new topological 
invariants. Their number can be easily enlarged with the use of the S-type invariants 
and frozen-in fields obtained in the previous sections, while the theorem on invariant 
forms enables us to construct limitless number of hydrodynamic media topological 
invariants. 
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7. Results and discussion 
Let us summarize and discuss the main results of the present paper. 
1 .  All universal geometric relations between invariants are obtained in the 993 and 

4 based on the description in terms of invariant forms. Universality of these relations 
makes them applicable to any hydrodynamic dissipationless medium. It is possible, 
of course, to verify the relations obtained, avoiding the differential forms language, 
by their direct substitution into the equations that define the invariants in 
coordinate representation (2.8), (2.11), (2.14), (2.15). However, only with the aid of 
this language did it become clear that  all possible relations between the invariants 
have been obtained. 

Any other relations should coincide either with the ones obtained or with the result 
of their subsequent application. This is because there are no other operations on the 
form space apart from the previously listed ones. 

2 .  A simple method of constructing new local dynamic invariants in hydrodynamic 
media from a limited basic set of known invariants is proposed. 

I n  principle, one can use Lagrange variables x, expressed in terms of Eulerian 
coordinates, x, = x,(x, t ) ,  as a universal set of basic invariants. These expressions 
are, by definition, Lagrangian invariants for all hydrodynamic media. The only 
difficulty in this case consists of expressing the invariants obtained in terms of the 
basic Eulerian fields. Another possibility to choose the basic set is associated with the 
Lagrange or Hamilton formulations for hydrodynamic systems, for example, in 
terms of Klebsh variables (see also Holm et al. 1983). 

It is interesting to note that the proposed method clarifies the common nature of 
invariants and relations between them that appear in different hydrodynamic media 
(e.g. between1 = (rot V/p).VS and I = ( W / p ) . V S ) .  Moreover, it permits one to avoid 
the technically cumbersome verification of invariance when substituting them into 
the basic hydrodynamic equations. 

3. With the use of this method a number of examples of new invariants in 
compressible adiabatic fluid and ideal MHD have been constructed. 

4. In  94 i t  is shown that frozen-in integrals form a Lie algebra with the 
multiplication operation defined by a vector field commutator. This important 
property not only permits us to construct new frozen-in fields, but also generates a 
specific Backlund transformation for solutions of hydrodynamic systems of 
equations. 

5. The language of differential forms makes it possible to  formulate and obtain in 
the most natural manner integral invariants for hydrodynamic media. The 
conservation proofs for these invariants are extremely simple and compact in this 
language. 

6. The subdivision of differential forms into closed and unclosed ones is of great 
importance for our study, because i t  leads to the existence of different types of 
frozen-in integrals and S-type invariants. As shown in this paper, closed w; forms are 
responsible for chargeless frozen-in fields, while unclosed w;-forms determine charged 
ones. For the latter frozen-in fields an integral invariant appears, the charge 
conservation law. So far there have been no examples of such invariants in 
hydrodynamics. We present here explicit examples of new charged frozen-in 
integrals in compressible fluid and MHD. 

The mathematical nature of the subdivision of forms into closed, unclosed and 
exact ones is more profound than as discussed in the present paper, since it demands 
the introduction of somewhat more complicated topological concepts. On the basis 
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of this subdivision, there is a close connection between differential forms and 
differential topology (Bott & Tu 1982). One can take as an example of such a 
connection the definition of a k-dimensional group of cohomologies of a manifold M 
which is one of the most important elements of topology. All the p-forms on a 
manifold form a linear space, while the closed differential forms form its subspace. 
The exact p-forms form a subspace of closed forms. A p-dimensional cohomology 
group of M H p ( M , R )  manifolds is called a group, elements of which are the 
equivalence classes of closed wP-forms differing in exact p-forms, that is {up} = 
(up + dup-l). The dimension of Hk(M, R) is referred to as the k-dimensional Betty 
number ; it is a topological invariant of M. 

7. Topological invariants conserved in all hydrodynamic media are constructed in 
this paper with the aid of invariant differential forms and their geometric meaning 
is discussed. There exist topological invariants IT for closed @;-forms, that is for 
charged frozen-in fields associated with the conservation of the corresponding frozen- 
in field lines linkage number. The IT invariant terms of S-type invariants have 
another interpretation which is discussed in the paper. It is non-trivial only for 
unclosed wk invariant l-forms (dwi + 0 ) ,  i.e. for the S-type invariants that can be 
vector potentials of frozen-in fields. P invariance characterizes the degree of non- 
integrability of the field of planes normal to the vector field of the S-type invariant. 
If this field of planes is integrable, then I'= 0 and a new type of topological 
invariants, P, obtained in the present paper arise in hydrodynamic media. The 
invariant I g  characterizes a topological foliation type of integral planes of this field 
of planes. I n  this sense P is a complementary topological invariant to the 1'-invariant 
which is sensible to topological distinctions among the states with I' = 0. 

If a form w i  is exact (w; = df), it  does not form a non-trivial frozen-in field and the 
invariant I' vanishes identically for all S-type invariants configurations. For such S- 
type invariants, there exist only new topological invariants 1 9 ,  i.e. the Godbillon-Vey 
numbers. 

8. Recognizing the importance of a new topological invariant 19 we present a 
rigorous proof of its conservation and non-triviality in the coordinate representation. 
Comparison of the latter with the proof in terms of differential forms clearly 
demonstrates the simplicity and all the other advantages of the language of 
differential forms. 

9. Explicit examples of new topological invariants of the 1' and P type in different 
hydrodynamic media are obtained in the paper. These examples are presented in the 
common coordinate form. The list of these invariants is limitless, since taking into 
account the results of $4, one can proceed in constructing more and more new S- 
invariants and frozen-in integrals based on the one already constructed. Some 
explicit constructions are presented in the appendices for compressible and 
incompressible fluids. 

Appendix A. Invariants in incompressible fluids 
To illustrate the application of the general relations, we give here the invariants 

for incompressible fluids. The equation of motion can be written in terms of the 
velocity l-form, w b  = V, dxi as follows: 

a,o;+L,w; = -&, (A 1) 

where P = t P+ P is the renormalized pressure. The invariant 3-form of mass 
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reduces in this case to the 3-form of volume and results in solenoidal velocity fields. 
The invariant 1-form ui can be easily obtained after definition of the O-form through 

a tH+LvH = - P ,  (A 2) 

where H = s P dt is the so-called action with the Lagrangian P = V + P defined by 
the Bernoulli integral. A similar action was used by Hollman (1964). On the other 
hand, one can consider H as a gauge function. I n  this gauge the velocity field is an 
S-invariant. Then 

OJ: = w;-d.H. (A 3) 

Evaluation of the external differential of (A 1) taking account of its commutation 
properties with L ,  and dd = 0 leads to the following invariant 2-form: 

w2 = dub. (A 4) 
In  terms of the coordinates on R3, the following frozen-in field can be obtained from 
(A 4): 

J = rot V .  

With this form and with ui we determine the Lagrangian invariant 

I = i J w i .  (A 5) 

J = r o t V ;  S =  V-VH; I = r o t V - ( V - V H ) .  (A 6) 

(A 7) 

(A 8) 

In the coordinate representation we have 

The list (A 6) can be easily extended with help of relations between invariants. 

S = V[rot V .  ( V -  VH)], 

I’ = rot V.V[rot V .  (V-VH)], 

Indeed (see §a), 

The invariants (A 7 ) ,  (A 8) and similar ones contain higher derivatives of the fields 
when the equation of motion has the form (A l) ,  and they can be naturally called 
higher invariants. The number of such invariants can be further extended with use 
of relations obtained above (see the diagram at the end of 94). 

Let us give some examples of S-type invariants. Start with new integral invariants 
that describe charge conservation laws of the corresponding frozen-in fields : 

(V-VH)xV((V-VH).rot V)dS.  (A 9) 
If = k,,, 

This is the charge conservation law of the field S = ( V -  VH) x V( ( V -  VH) .rot V). 
For the frozen-in field J” = (V-VH) x VI‘ (here is defined by (A 8)) the charge 
conservation law takes the form 

I; = (V-VH) x V(rot V.V(rot V . (  V-VH)))dS’. (A 10) 

Similarly, with the use of (5.1) one can easily const)ruct other types of integral 
conservation laws : ‘ Mass ’ conservation laws, for example, that  are described by the 
corresponding density invariants : 

f(V.rot V,rot V.V(rot V.(V-VH)), ...)( V-VH)-rot V d X .  (A 11) 
= I,,,, 

Here f is an arbitrary function of Lagrangian invariants. 
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For an example of a topological invariant of IT-type in this medium one can take 
(see (6.4)) r 

Then the integral (A 12) coincides with Moffatt's invariant if rot Yis tangent to the 
surface bounding the volume V ( t ) .  

When ( V -  VH) *rot V = 0, a new invariant arises : 

[( V-VH) x rot m-rot (V-VH) xrot  Y ] dx3. [ (V-VH)2 

The topological invariant (A 12) is complementary to (A 13). 

example, 

(see (6.32) and (6.33)). Thus, for such S-fields only Ig-invariants are non-trivial. 
Of course, we have presented only the simplest examples of invariants for 

incompressible fluid. It is easy to extend the list of these invariants with the aid of 
the results obtained in $4. 

The topological invariant I' vanishes identically for a field S of the type IVI'. For 

S = [rot Ye ( V -  VH)] V[rot V -  V(rot V .  ( V -  VH))] 

Appendix B. Compressible fluid 
Equations of motion of compressible fluid can be represented in the form 

Here p follows from the equation of state, p = p(p). An invariant 1-form can be easily 
obtained based on the gauge 

where the zero-form H is governed by the equation 

ws = w , - c w ,  

a,H+L,H = -F. 
The latter equation can be easily integrated in Lagrangian variables : 

We have once again obtained the action with the Lagrangian = i P + p ( p ) ,  which 
coincides with the Bernoulli integral. Thus, in the chosen gauge the velocity field is 
an S-type invariant. 

The frozen-in vector field can be obtained through the exterior differential of the 
equation of motion. Then comparison of the invariant 2-form w2 = dw, with the 
2-form iJ$ leads to the well known result, 

J = rot V/p. 

Thus, we have obtained an invariant 1-form and a frozen-in vector field. As follows 
from the diagram in $4, there are two ways to obtain new invariants from os = 
wv-d€€. The first route yields the following invariant forms: 

0' = i J W s ,  (l)W' = LJiJws iJdiJWs, ( l )Ws = di,diJws, ("US = diJdiJdiJWs. 
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Thus, we obtain two Lagrangian invariants and two invariants 1-forms, (l)wS and 
(')us. The second route gives 

( l ' W S  = Ljws, ("U; = dLj W, = dijdw,, 

@)w: = L,dL,w, = di,di,dw,, @)wl = iJL,dL,w, = i,di,diJdw,. 

Two new invariant 2-forms determine new frozen-in field S and s' as 

i, w3 = (1)w2 ; i, 0; = (Z)w2. 
P 

Furthermore, as we have mentioned above, the frozen-in fields can be obtained from 
invariant 1-forms since the exterior product of two invariant 1-forms is an invariant 
2-form. Basing on these frozen-in fields and invariant forms, one can obtain new 
invariants using the diagram. 

The invariants obtained can be represented in the coordinate form as 

rot V I'=-. rot V V( V -  VH) * -, rot V 

P P P 
1 0  = (V-VH)*-, 

J"=$[(V-VH)xSk] ,  I c =  1 , 2 , 3  ,.... 

We do not cite more cumbersome equations, e.g. (2)ws = i,di,diJdws and J". 
These invariants (apart from lo, So and JO) are higher ones since they include the 

derivatives of the field whose order exceeds those which appear in equations of 
motion. 

The local dynamic invariants presented generate integral invariants in accordance 
with (5.1). Let us give some examples. The charge conservation law of frozen-in 
integrals (see (6.1)) yields 

If = 

r 
= 

I$  = fS,,, ( V -  V H )  x S2 ds'. 

The mass conservation law for the corresponding quantities leads to 

1 
= fpdx3, 1; = f( V-VH)-rot Vdx3, I I P 
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where f is an arbitrary function of Lagrangian invariants, 
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One can easily construct topological invariants from (6.4) and (6.25) with the use of 
the local dynamic invariants obtained. For instance : 

I; = Jv,,, ( V-  V H )  -rot Vdz3, 

( V - V H ) - ( ( V - V H ) * V ) -  
P 

rot V 

. [ ( y ! v )  ( V - V H )  - (( v - V H )  V ) -  rot “1 dx3. 
P 

When the IT-type invariants vanish identically, which implies vanishing of 
the integrand, complementary topological invariants I g  arise. If, for example, 
( V -  V H )  rot V = 0 then 

[( V - V H )  x rot VJ [( V - V H )  x rot v] 
rot[ ( V - V H ) z  

Similarly, another complementary invariant Ig arises when 
The S-invariants of the gradient type do not generate topological invariants I’ but, 

as in non-compressible fluid, they generate P invariants. For example, S = PSl leads 
to topological invariants of the following type : 

= 0. 

An analogous invariant arises for S = IoS2. 
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